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In single machine scheduling problems with availability
constraints, machines are not available for one or more periods of
time. In this paper, a single machine scheduling problem with
flexible and periodic availability constraints is investigated. In this
problem, the maximum continuous working time for each machine
can increase in a stepwise manner and can have two different
values. In addition, the duration of unavailability for each period
depends on the maximum continuous working time of the machine
in that same period, again with two different values. The objective
iS to minimize the number of tardy jobs. In the first stage, the
complexity of the problem is investigated; then, a binary integer
programming model, a heuristic algorithm, and a branch-and-
bound algorithm are proposed in the second stage. Computational
results of solving 1680 sample problems indicate that the branch-
and-bound algorithm is capable of not only solving problems up to
20 jobs, but also of optimally solving 94.76% of the total number
of problems. Based on the computational results, a mean average
error of 2% is obtained for the heuristic algorithm.

© 2018 IUST Publication, 1JIEPR. Vol. 29, No. 1, All Rights Reserved

1. Introduction

[2]). Depending on how the beginning of

When dealing with scheduling problems with
availability congtraints, at least one machine is
unavailable for one or more periods of time. This
may result from a number of causes including
breakdowns, maintenance, tool change, or
overlapped planning horizons. Many researchers
have investigated the effects of availability
constraints on scheduling problems in various
areas such as production planning, cost anaysis,
and other industrial applications (for example [1],
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unavailability period is determined, scheduling
problems with availability constraints are divided
into two groups. fixed and flexible. Moreover, if
fixed (flexible) unavailability periods occur at
predetermined intervals during the planning
horizon, then such constraints are called periodic
fixed (flexible) availability constraints. In
problems with fixed availability constraints, the
start time, finish time, and duration of the
unavailability periods are al predetermined. In
problems with flexible availability constraints, the
durations of the unavailability periods are
predetermined. However, the start times of these
periods are decison variables. In the latter
category, in some problems, unavailability occurs

International Journal of Industrial Engineering & Production Research, March 2018, Vol. 29, No. 1



16 Omolbanin Mashkani & Ghasem Moslehi

Minimizing the Number of Tardy Jobs in the
Single Machine Scheduling Problem . . .

at the predetermined intervals, while, in some
others, the maximum continuous working time of
the machine is constant, and the

start time of the unavailability periods may be
equal to or less than this maximum value. On the
other hand, if the duration of unavailability periods
is a function of the conditions of the machine or
the operator, then the availability constraint is
called “variable unavailability”.

References [3- 6] may be consulted for more
details on scheduling problems with fixed
availability constraints. A number of studies have
been reported on flexible availability constraints.
Yang et al. [7] were the first to introduce the single
machine scheduling problem with one flexible
unavailability period within a given interval. In this
study, makespan minimization with no preemption,

nr— fa‘C was studied. While the

max *
problem was proved to be NP-hard, a heuristic
algorithm was proposed for solving the problem.
Chen [8] studied the same problem reported in [7]
considering flow time. He proposed two binary
integer programming models to solve problems up
to 10 jobs. In a later study, Chen [9] dealt with the
same problem with the objective of total tardiness
and developed two binary integer programming
models capable of solving problems up to 8 jobs.
More recently, Chen [10] studied the single
machine scheduling problem with flexible periodic
availability constraints to minimize the makespan,

symbolized by 1

which is denoted by 1|nr - fpa |CmaX . He proposed

one heuristic algorithm and one mixed integer
linear programming model that was capable of
solving problems up to 100 jobs. To address the
single machine scheduling problem with a flexible
availability constraint and with the objective of
minimizing total completion time, Yang et al. [11]
proposed one heuristic algorithm, one dynamic
programming algorithm, and one branch-and-
bound algorithm capable of handling problems up
to 400 jobs. Ganji et al. [12] investigated the single
machine scheduling problem with a flexible
unavailability period to minimize the maximum
earliness. To find the optimal solution to each of
these problems, they proposed a heuristic
algorithm and a branch-and-bound algorithm
capable of dealing with 14000 jobs.

Scheduling problems with flexible availability
constraints, where maximum continuous working
time of the machine has a predetermined value,
was first introduced by Qi et al. [13]. They
assumed predetermined values for both maximum
continuous working time and duration of
unavailability constraints. To minimize the total

completion time, they proposed three heuristic
algorithms and one branch-and-bound algorithm
capable of solving problems up to 20 jobs. Graves
and Lee [14] considered the same problem
reported in [13] in which jobs are semi-resumable
and the objective functions are maximum lateness
and weighted sum of jobs’ completion time. For
solving these problems, they proposed two
dynamic programming algorithms.

Moshiove and Sarig [15] dealt with the single
machine scheduling problem with one flexible
availability constraint with the objective of total
weighted completion time. They developed a
dynamic programming algorithm and a heuristic
algorithm for solving the problem. Low et al. [16]
introduced five heuristic algorithms for solving the
single machine scheduling problem with flexible
and periodic availability constraints and the
objective of minimizing the makespan.

Sbihi and Varnier [17] analyzed the single machine
scheduling problem with flexible and periodic
availability constraints and the objective of
maximum tardiness. They proposed one heuristic
and one branch-and-bound algorithm capable of
handling 15 jobs.

In the studies performed in the field of scheduling
problems with variable availability constraints,
duration of the unavailability periods is a linear or
exponential function of continuous working time
of the machine, while the start time of
unavailability constraints and their durations are
determined by such factors as deterioration during
processing jobs or tool aging. These constraints
have been investigated by [18- 20].

Mashkani and Moslehi [21] discussed a new single
machine scheduling problem under bimodal
flexible periodic availability constraints. The
objective function was minimizing the total
completion time. They assumed that, in each
period, maximum continuous working time of the
machine can have two fixed and predetermined
values, and the unavailability start time is a
decision variable depending on the maximum
continuous working time of the machine.

They supposed that the duration of unavailability
constraint in each period can have two different
values. Hence, in each period, if any increase in the
continuous working time of machine is required to
improve the objective function, the duration of
unavailability at the end of that period will increase
to a constant value. In addition, preemption is not
allowed.

It should be noted that, in real world, it is possible
to maintain and service a machine (such as the
milling machine) after a determined continuous
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working time. If maintenance activities cannot be 2. Problem Definition and Its
performed for whatever reason, then the Complexity

continuous working time of the machine will
increase. Hence, it is natural that the machine
needs more time for service, oiling, scrubbing, etc.,
and, thereby, enhancing the unavailability of the
machine [21].

Mashkani and Moslehi [21] presented a heuristic
and a branch-and-bound algorithm to solve the
problem. Their proposed branch-and-bound
algorithm was able to cope with problems up to 22
jobs. They were the first ones who investigated the
single machine scheduling problem with flexible
periodic availability constraints and two values for
the continuous working time of the machine in
each period.

In this paper, the objective function is minimizing
the number of tardy jobs under the same
circumstances, supposed by Mashkani and Moslehi
[21]. In Section 2, problem definition, symbols and
notations are presented; in addition, the problem
complexity is investigated. Section 3 presents a
developed binary integer programming model,
while Section 4 presents relevant theorems and
lemmas. In Section 5, a heuristic algorithm for
obtaining the near optimal solution is proposed; in
Section 6, details of the proposed branch-and-
bound algorithm are discussed. In Section 7, a
generalized form of the problem with several kinds
of unavailability periods is introduced. Sections &
and 9 are devoted to computational results and
concluding remarks, respectively.

A set of n independent jobs (J.J,,..J,} 1is

available at time zero to be processed on a single
machine. Setup times are independent of sequences
of jobs; they, however, are part of the processing
time for each job. In each period, the maximum
continuous working time of the machine can have
either of two values 7, and 7, (T, > T)), and the
duration of each unavailability period, which
depends on continuous working time of the
machine, can have either of the two values W; and
w, (W, > W), respectively. Since maximum
continuous working time of the machine and
duration of the unavailability period can have two
different values in each period, such constraints are
called “the bimodal flexible and periodic
availability constraints” as depicted in Fig. 1. Jobs
scheduled between each of two unavailability
periods are called a “batch”. In Fig. 1, values ¢, to
q4 represent the total processing time of the
scheduled jobs for batches 1 to 4, respectively.

This problem is symbolized asl\nr-fpa,bm\Z;’:l Ui .

In this paper, the following notations are used:

n: Number of jobs.

p:: Processing time of job J; for i=1, 2, ..., n.

d;: Due date of job J; for i=1, 2, ..., n.

C;: Completion time of job J; for i=1, 2, ..., n.

K : Number of batches needed for scheduling all
jobs.

K" : Number of batches in the optimal schedule.

By : the k" batch for k=1, 2, ..., K.

ni: Number of scheduled jobs in the kth batch such

that K mg=n for k=12,..K

& TI » & T2 & Tl >» < Tz ;
q,<T, T, <q, <T, qs=T, L« .=,
«—1 » < > < > < >
>
0 w, w, w, w, time

Fig. 1. Single machine scheduling problem under bimodal flexible and periodic availability constraints

J¥: Job J; which is scheduled in the A" batch for
i=1,2 ..,nand k=1 2, ..., K.

C/: Completion time of job J; which is scheduled
in the kth batch for i=17, 2, ..., nand k= 1, 2, ...,
K.

qi: Total processing time of the jobs scheduled in
the kth batch for k=1, 2, ..., K.

T, : Maximum continuous working time of
machine for p=1, 2.

W,: Duration of unavailability corresponding to

the maximum continuous working time of the

machine for p=1, 2.

o : Sequence of scheduled jobs.

o' : Sequence of unscheduled jobs.

C(o) : Completion time for partial sequence o .
T;: Tardiness of job J; calculated through Eq. (1).

T; = max{0,C; -d; } i=12..,n

)

U; : A binary variable. It is 1 if job J; is tardy;

otherwise, it is zero for i=1, 2, ..., n.
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T2 ,U; - Number of tardy jobs.

Sy : Starting time of the kth batch for k=1, 2, ..., K.
Qi et al. [13] showed that the single machine
scheduling problem with flexible and periodic
availability constraints and with the objective
function of minimizing maximum completion time
of jobs, where the maximum continuous working
time of the machine in each period has a
predetermined value, is NP-hard. In the following,
using Theorem 1, it is shown that problem

Unr- fpabm| 1 U; is also NP-hard.

Theorem 1: The problem 1\nr-ﬁm,bm‘2?=1 Ui is
NP-hard.

Proof: In problem l‘nr-fpa,bm‘zln:l U; , assume that
T; equals 7> and W, equals W,.

Then, this problem transforms to the problem
1nr-fpa| /Ui in which maximum continuous
working time of the machine has a predetermined
value. Therefore, the complexity of the problem
Unr- foabm| 21, Uj is at least as equal as the problem

1nr- fpa| X, Ui . Since the problem 1|n - ﬁ;a|cmax is
NP-hard [13], the problem 1|nr-fpa| X, U; is also
NP-hard. As a result, the problem
1\nr-_fpa,bm\ X, Ui has at least the complexity of an

NP-hard problem.

3. Mathematical Modeling

In this Section, a mathematical model is developed
for the problem 1|nr-fpabm| X% Ui . To do so, the
following variables are defined:

x;’c : A binary variable. If job J; is scheduled in
batch k, its value will be 1; otherwise, it will be
zero fori=1, 2, ..., nand k=1, 2, ..., K.

yf,: A binary variable equal to 1 if the maximum

continuous working time of the machine in the kth
batch equals 7,; otherwise, it is zero for p=1, 2 and
k=1,2, .., K

h;: This is a parameter. If job J; is located before
job J; in the EDD sequence (arranging the jobs in
the non-decreasing order of their normal due
dates), then its value will be 1; otherwise, it will be
zero fori,j=1, 2, ..., nandj #1i.

Mathematical model:

minimize Z?Zl U; (2)

Subject to:

sK_xF o P=1,2,.n 3)
k 2 k

Z;l:l Di X Szpzl 7}7 .yp k= ,2,.,K (4)

§ =0 (5)

_ r _ r

Sk = P i o + SRS W,
(6)

k=2,3,.,K

C}k =S +pi + Zj#pj.hij.xlk i=1,2,..,nmk=23.,K (7)
GaMi-ysd oo n k=23.K )]
G —di <MU; i=1,2,.,n (9)
=2 15 =1 k=12,.,K (10)

x,k,yf,,Uie{O,l} p=12i=12,..,mk=12,..,K (11)

Equation (2) represents the objective function for
the number of tardy jobs. According to Eq. (3),
each job can be scheduled just in one batch.
Equation (4) determines that the total processing
times of the scheduled jobs in the kth batch are less
than or equal to the maximum continuous working
time of the machine. Start time for the first batch is
zero, as in Eq. (5). Eq. (6) calculates the start time
of the kth batch for k=2, 3, ..., K.

In Eq. (7), the completion time of job J; in the kth
batch is represented and the completion time of job
J; is restricted in Eq. (8). Equation (9) determines
tardiness of job J;. In Egs. (8) and (9), M is a large
positive number. According to Eq. (10), the
duration of unavailability after the continuous
working time of the machine in each batch can
have only values W; and W,. Equation (11) deals
with the binary characteristics of the decision
variables.

In this model, the number of variable x/ is nxK,
the number of variable y," is 2xK, and the number
of variable U; is n; therefore, the total number of
variables in the model will be nxK+2xK+n.
Equation (3) of the model should be feasible for n
variables and Eq. (4) and (10) should also be held
for K batches. Eventually, since Egs. (5), (6), (7),
(8), and (9) can be merged, then nxK equations
will be feasible by implementing these constraints.
Hence, the number of constraints in the model will
be n+2xK+nxK. Note that parameter /; should be
determined by EDD arrangement of jobs.

The mathematical model of 1|nr-fpabm| X1, U;
problem is solved by CPLEX of the GAMS

software and has been capable of solving problems
up to 12 jobs in less than 3600 seconds.

4. Lemmas and Theorems
In this Section, a number of lemmas and theorems
are introduced and proved based on specifications

of the problem 1|ur-fpabm/ X" U; . First, the

relevant theorems to find a lower bound for the
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problem 1[nr- fpabm| X U; are analyzed.
Lee [22] showed that the optimal solution to the
problem 1|r-a|X",U; can be calculated by Moore

and Hudgson algorithm. In his method, jobs are
initially scheduled using Moore and Hudgson
algorithm. Then, the duration of the unavailability
period is added to the completion time of those
jobs, which are scheduled after the unavailability
period. Accordingly, in Theorem 2, a lower bound
for the problem 1|nr- fpa,bm| X1 U; is proposed.

Theorem 2: The optimal solution to the problem
1| |22, u; is a lower bound for the problem

n
2ui-
i=1

Proof: Since the solution to = problem 1| |, U;

1

nr - fpa,bm

is a lower bound for problem 1[nr—a|Z/,U; as

shown in [22], the number of tardy jobs will
definitely not decrease when unavailability periods
are added. Therefore, it can be concluded that the

optimal solution to problem 1| [Z-,u; is a lower
bound for problem 1|nr- fpabm| X1, U .

Corollary 1: In problem 1|nr-fpabm|S1 Ui , it is
assumed that o is the partial sequence of
scheduled jobs and o' is the set of unscheduled
jobs. Using Theorem 2, if the jobs in set o' are
scheduled by Moore and Hudgson algorithm
without availability constraints and the number of
tardy jobs has consequently become equal to
Yico'U; , then TieqU; +Tieoru; Will be a lower

bound for the partial sequence o .
To find another lower bound for problem

1

nr - fpa, bm ZU,- , first, a lower bound for the
i=1

single machine scheduling problem with flexible
and periodic availability constraints is proposed
where the maximum continuous working time of
the machine in each period is 7, and duration of
unavailability is ;. When preemption is allowed,

this problem is symbolized by 1|r—fpa| X", U; and
when preemption is not allowed, the problem is
denoted by 1|nr—fpa| X" Ui . To solve problem

1r—fpa| =1, Ui , algorithm H; can be used.

Algorithm H,

Step 0. Arrange the jobs on the basis of EDD rule
and name them in the same order. Set 6 =@, 7 =0

, and o' ={Jj,h,...J,} . Set parameters i,5,¢; and

gr equal to zero. Set k=1 and go to Step 1.

Step 1. Set i=i+1. If i=n+1, then go to Step 4;
otherwise, calculate g, = g, + p; . Then, omit job J;
from set o’ and put it in set o . If ¢, <7, then set
G=C_1+p and go to Step 2; otherwise, set
o=N-g , k=k+l , G=G+p+WM , and
qr = pi -9 ; then, go to Step 1.

Step 2. Calculate the tardiness of job J;. If it is not
tardy, then go to Step 1; otherwise, go to Step 3.
Step 3. If job J; is the first tardy job in the
sequence, then choose a job with the largest
processing time from set ¢. Omit this job from set
o and put it in set . Go to Step 1.

Step 4. Schedule the jobs in set 7 at the end of the
sequence in an arbitrary order.

Algorithm H; operates similarly to Moore and
Hudgson algorithm, yet only with the following
slight difference. If the total continuous working
time of the machine in each period exceeds a
predetermined value (which is 7;), then the
operation is cut and an unavailability period is
implemented before further processing continues.
As a result, the time complexity of algorithm H,
will be O(nlogn).

Since the optimal solution to problem 1|r—d| X", U;
is obtained from Moore and Hudgson algorithm

[22], in Theorem 3, it is shown that algorithm H;
provides the optimal solution to problem

l\r—fpa\Z;’:l Ui . Note that, in problem
1\r—/pa\z;;1 Ui , the duration of each unavailability

period is W, and the time distance between two
consecutive unavailability periods is exactly 7;.

Theorem 3: The solution yielded by algorithm
H; is the optimal solution to problem
1

r-j]'m‘ Z;’zl Ui .
Proof: Suppose that, in sequence S, job J; is
scheduled in batch B and all jobs before job J;

are not tardy. In this sequence which is displayed
in Fig. 2, the set of jobs ¢ is scheduled from the

first batch to batch B,_;. If the jobs in set ¢ are

scheduled without unavailability and if the lengths
of the entire unavailability periods are summed up
and scheduled at the end of this set, then sequence
S’ is obtained as shown in Fig. 3.

In sequence §’, unlike in sequence S, the jobs in
set ¢ will remain un-tardy whose completion time
has not increased. Meanwhile, since the processing
time and lengths of unavailability periods are
fixed, the completion time of the jobs in both
sequences S and §’, placed before job J; in batch
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B, , will not change; as a result, they will remain
un-tardy. Hence, our problem transforms to
problem 1|r-a|=", U; in which the start time of the

unavailability period equals the total processing
time of the jobs in set ¢ and the length of their

unavailability period is (k -1)xw; . Since the
optimal solution to problem 1[r—d/X",U; is
obtained from Moore and Hudgson algorithm [22],
it may be concluded that the optimal solution to
problem 1|r- fpa| /" Ui can also be obtained from
the same algorithm. Note that, in the optimal
solutions to both problems 1|r-a|X",U; and

1r—fpa| 21, U; , tardy jobs are scheduled at the end

of the sequence with an arbitrary order.
In Theorem 4, a lower bound is proposed for

problem 1|nr— fpa,bm| X1, U; .

Theorem 4: = u, it s
assumed that the maximum continuous working
time of machine is 7, and unavailability
duration is W; for each period. Hence, the
solution to this problem by H; algorithm is a

lower bound for the problem 1 |ur- fpabm| 21, U; .
Proof: According to Theorem 3, the solution to the
problem 1[r—fpa|=7_,U; is obtained from algorithm

H;. This value is denoted by H*. Suppose that F;

is the optimal solution to the scheduling problem
with bimodal flexible and periodic availability
constraints where preemption is allowed. This

problem is denoted by 1|r- fpa,bm| =", Ui . Since the
maximum continuous working time of the machine
in problem 1| fpa| X", U; is always larger than or
equal to its corresponding value for problem
1|r-fpa,bm| = U; and as the unavailability period
is always shorter than or equal to its corresponding
value in problem 1| fpa.bm| " U; , then relation

17

Fz* > Fl* is always true. On the other hand, suppose
that 7~ is the objective function for the problem
Unr—fpa,bm|ZI Ui . It is apparent that Frois
always larger than or equal to the objective
function of the same problem when preemptlon is
allowed, meaning F > 5 consequently, F > Ii*

Corollary 2: In problem 1|nr— fpa,bm| X1 Ui , it is

assumed that - is the partial sequence of
scheduled jobs and o' is the set of unscheduled
jobs. Assume that preemption is allowed: the
duration of continuous working time of the
machine in each period being 7> and the length of
each unavailability period being ;. So, if the jobs
in set o' are scheduled using A, algorithm, the

number of tardy jobs is Tic o'U; . As a result, the

value of Tic sU, +Zic 5'U; is a lower bound for

partial sequence o.

Corollary 3: In problem 1| |Z",u; , there is no
availability constraint and if any availability
constraint is added to the problem, then the
completion times will not decrease. As a result, the
number of tardy jobs in the optimal solution to
problem 1| \Zl’-’zl U; is always smaller than or equal
to its corresponding value in the optimal solution
of problem 1|r— fpa| X U; .

Theorem 5: In the optimal solution of problem
L|nr- fpabm| P, U; , the order of jobs in each
batch follows the procedure of Moore and

Hudgson algorithm.
Proof: Scheduling of jobs in each batch is similar

to the solution of problem 1| |, u; where there

are no availability constraints and the optimal
solution can be obtained from Moore and Hudgson
algorithm.

W- --ﬁﬁﬂ=

time

Flg 2. Sequence Sin Theorem 3.

4

o (DW,

0.

Bl

time

Fig. 3. Sequence s’ in Theorem 3.

International Journal of Industrial Engineering & Production Research, March 2018, Vol. 29, No. 1



Minimizing the Number of Tardy Jobs in the Single
Machine Scheduling Problem . . .

Omolbanin  Mashkani & Ghasem

Moslehi 21

Using the result of Theorem 5, the following three
conclusions may be drawn:

Corollary 4: In problem 1|nr—fpa,bm| X" Ui , the
dominant sets consist of those sequences in which

the order of jobs in a batch will follow the EDD
order if there are no tardy jobs therein.

Corollary 5: In problem 1|nr— fpa,bm| X" Ui , the

dominant sets are those sequences in which if a
job in one of the batches becomes tardy, then the
remaining jobs in that batch will also become
tardy.

Corollary 6: In problem 1|nr— fpa,bm| X" Ui , the
dominant sets include those sequences in which if
job J; is scheduled in batch B, and if, further, it
has become tardy, then there are no jobs in that
batch before J; whose processing times are larger
than that of Ji.

Lemma 1: In problem 1i|ur-fpabm|Zt ;Ui |

there is one optimal solution in which Eq. (12)
holds for job J;, where job J; is the first job in
batch By

Tp =4k < pi Ji € Byl

(12)
k=12,..n-1;pe{l,2}
Proof: It is clear that if job J; can be scheduled in
batch By, then, by scheduling it in batch B, its
completion time will definitely be shorter than
that in the alternative situation where it is
scheduled in batch Bj.;. Therefore, neither its
tardiness will increase, nor the completion times
of other jobs will change.

Lemma 2: In problem 1\nr-fpa,bm\zl'-’=, U; , the

dominant sets consist of sequences in which all
tardy jobs are located at the end of the
sequence.

Proof: Consider sequence S in which job J; is
tardy and there is at least one job without
tardiness following it. If job J; is transferred to the
end of sequence S, then sequence s’ is obtained.
In contrast to S, completion time of the entire jobs
except J; will either remain fixed or decrease in
s", while the total number of tardy jobs will not
increase.

Corollary 7: If job J; from set o' is added to the
end of the partial sequence o and it becomes

tardy, then the cardinality of set o', i.e., |o|, can
be calculated and compared to the number of
tardy jobs in a feasible solution, i.e., 2./ U; . If

Eq. (13) is true, then scheduling the jobs of o' in
the partial sequence o may be ignored.

o] = = u; (13)
Lemma 3: When job J; is scheduled in set ¢’ at

the end of partial sequence o, if J; becomes
tardy and Eq. (14) holds, then by adding set ¢’
to the end of the partial sequence « , a
complete solution with at most |a| tardy jobs

will be obtained regardless of the job orders
and availability length of machines in batches.

o] < 22,01 (14)

Proof: According to Lemma 2, if job J; is tardy,
then the whole jobs in set o' will also become
tardy. Therefore, arrangement of these jobs has
no impact on improving the objective function. In
addition, since their amount of tardiness is of no
significance, then they can be scheduled by
considering arbitrary maximum availability. In
this way, if the number of jobs in set o' is smaller

than X, U; , then a complete solution is obtained
which has less tardy jobs than the previous
solution.

Lemma 4: In partial sequence (e,1;,J;), if job
J; is scheduled in batch B; and is tardy, then
this partial sequence will be dominated by the
partial sequence (s,;) Where g;_;+p; <T.
Proof: Consider c(s) to be the completion time
for partial sequence o . Then, tardiness of job J; in
the partial sequence (s,%;,J;) is obtained by Eq.
(15).

T =C(o)+W + p; —d; (15)
In addition, the tardiness of job J; in the partial
sequence (o,.J;) can be calculated from Eq. (16).

§ =max{0,C(c) + p; — d;} (16)
Comparison of these two equations reveals that it
is possible for the tardiness of J; in (5J;) to
become zero and, consequently, the partial
sequence (o, #;,J;) to be dominated by partial
sequence (q,J;) -

Lemma 5: Suppose that, in the partial
sequence (s, J;), job J; is scheduled in batch B,
and is tardy. If there is a job J; in set ¢’ such
that it is not tardy in the partial sequence
(e,;) and that maximum availability of the
machine in B, does not change, then the partial
sequence (s,;) Will be dominated by (5, /; ).
Proof: According to lemma 2, if J; is tardy, then

all the jobs in set ¢’ will become tardy. Thus, J;
will be definitely tardy in the partial sequence

(¢,J;) . Since job J; in the partial sequence (q,/;) is
not tardy, then the number of tardy jobs in (s,./;)

will be less than that in (s,J;) . Therefore, the
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partial sequence (5,5;) Wwill be dominated by
(6.J)-

Lemma 6: If in the optimal solution to
problem 1| |2, v; , the start time of the first

tardy job is @ and the maximum earliness of
jobs is E,,,. , then there is an optimal solution

to problem 1|nr-fpabm| X ;Ui in which those

jobs that begin after ¢ + E,,q, Will be definitely
tardy.

Proof: Assume that the jobs in sequence S, as
shown in Fig. 4 are scheduled using Moore and
Hudgson  algorithm  without  availability
constraints. It can be seen that job J; belongs to
the set of non-tardy jobs with an earliness of E;.

If at least one unavailability period is added to
this problem and if job J; is the first to begin after
O+ Enqx , then sequence S’ will be obtained as
shown in Fig. 5. In sequence s , relation
O+ Epax +¢+ pj > E; 18 true; thus, job J; will be

definitely  tardy. Therefore, in

1|nr— fpa,bm| £, U; , those jobs which begin after

problem

0+ Epax Will be tardy.

It should be noted that Chen [23] studied the
single machine scheduling problem with fixed
periodic availability constraints and with the
objective function of the number of tardy jobs as
shown by 1|nr—pa| =%, U; . To solve this problem,
Chen proposed five points which also hold true
for problem 1|nr— fpa,bm| X7 Ui . In this paper,

attempt is made to benefit from these points.
However, our investigations show that only one
of these points, introduced below as Notation 1,

can be used in the problem 1|nr—fpa,bm| X1, U;

and will be introduced in the following as
Notation 1.
In order to introduce Notation 1, it is required to

consider sequence S =(0.%,02.7) in which ¢
and o, are partial sequences and {(J.op.J;}

Early Jobs in 1] ‘Z;’:IU[

belong to B;. In sequence S, as presented in Fig.
6, the completion time of partial sequence oy is
C(o;), and the total processing time of the jobs in
o is considered to be £, . Exchanging jobs J; and
J; in sequence § leads to sequence
§'=(o1.Jj.02.J;) shown in Fig. 7. Consequently,
Notation 1 can be concluded for these two
sequences.

Notation 1: If Egs. (17) and (18) are true, then
sequence S will be dominated by S’ .

pj—dj <pi—di a7
dj < dj (18)

5. The Heuristic Algorithm H,
In this section, a heuristic algorithm called H, is
proposed to obtain a near-optimal solution to the

problem 1 ‘nr—ﬁm,bm‘ Z?zl Uj .

In algorithm Hj, jobs are initially arranged by the
EDD rule. Then, an initial order of jobs will be
obtained by algorithm H;. In the following, it is
assumed that just one unavailability period exists
for scheduling the remaining jobs; therefore, two
batches will exist for scheduling the jobs. One of
these batches is located before and the other is
located after the unavailability period. In order to
schedule the jobs in the first batch, the best batch
length and, thereby, the best length of
unavailability period should be chosen such that
the number of tardy jobs becomes minimized.
Then, this batch and its unavailability period are
considered fixed and the jobs within it will be
kept fixed as well.

In the second step, the same procedure is adopted
for the remaining jobs and the process continues
until the entire jobs are scheduled. Based on what
went above in each batch, the impacts of selecting
the maximum machine availability of length 7; or
T, is calculated, and this will be used to choose
the duration of the unavailability period.

tarly Jobs in 1] | 2¥'_,U;
A

A - £ —~
4 N <>
Lol o T [l ] IR P S O
0 \ time
Q Q+max{Ei}

I<i<n

Fig. 4. Sequence S in Lemma 6

S

S A T A

0 v
Q

O max {E;}

1<i<n

Fig. 5. Sequence s’ in Lemma 6
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4 o,
/—/%
[ [ o Pl - [u[ o] .
0 C(o)) time
Fig. 6. Sequence S in Notation 1
il o,
L] - A .
0 C(o)) time

Fig. 7. Sequence s’ in Notation 1

Suppose that some jobs in partial sequence c are
scheduled in batches 1 to By;. Two scenarios can
be imagined for the maximum machine
availability in batch B;. In the first sequence,
represented by sequence S in Fig. 8, this
maximum value is 7, and r jobs are scheduled in
this batch. Following this batch, an unavailability
period of the length W, is set. Then, the
remaining jobs are scheduled using the order
obtained from algorithm H,; and without
availability constraint.

In the second scenario, represented by s in Fig.
9, it is assumed that the maximum availability of
the machine is 7, and y jobs ( y>r) can be
processed in batch B, After this batch, one
unavailability period with length W, is scheduled
and the remaining jobs are scheduled using the
order obtained from algorithm H,.

If the number of tardy jobs in sequence S is less
than that in sequence S’ , then sequence S is
better and the maximum availability of the
machine in the current batch should be considered
as T;; otherwise, T, should be adopted. In
addition to the symbols introduced earlier, the
following symbols are also used in algorithm H:
it Job number.

J: Location in the schedule.

Ny : Number of tardy jobs resulting from

scheduling jobs with maximum availability of 7.

Nz © Number of tardy jobs resulting from
scheduling jobs with maximum availability of 7.

Algorithm H, consists of the following steps:
Step 0: Set o' = {J1,J,...J,} and parameters i, J,

J, qr and y equal to zero and i=1.

Step 1: By uing algorithm H; within the
maximum continuous working time of machine
T, and unavailability duration ¥, obtain an initial
arrangement of jobs and name them based on this
order.

Step 2: Select the jobs based on the order
assigned in Step 1. Set i=i+/ and j=j+I. If
i=n+1, then go to Step 8; otherwise, calculate
ar =g +pi- If ¢ > 7, then set y=i and go to Step

3; otherwise, schedule job J; in the location of j.
Update the jobs in ¢’ as o' =o' {J;} and go to
Step 2.

Step 3: Suppose that the maximum availability of
the machine for the kth batch is 7,. Schedule job
J; in batch By.; and use algorithm H; within the
maximum continuous working time of machine
T, and the unavailability duration W; to schedule
the remaining jobs. Put the number of tardy jobs
resulting from this sequence into Ngz) . Go to

Step 4.

Step 4: Set 5 =g, — p;. Put the set of jobs o' into
a set ¢ and create a list M.

Step 4-1: Select the first job from the set of jobs
@ and name it J,.

Step 4-2:Set s =5+ p; .

Step 4-3: If s <5, then put job J, in list M and
update set @ as p=¢p-{/g} andsety =y + 1. If
¢ =@, then go to Step 4-5; otherwise, go to Step
4-1.

Step 4-4: If s > B, then go to Step 4-5.

Step 4-5: Suppose that the maximum availability
of the machine in the kth batch is 7, and schedule
job J; accompanied with the jobs in list M in this
set. Schedule the jobs in o' =0 -M using
algorithm H; within the maximum continuous
working time of the machine 7, and the
unavailability duration W; and put the resulting
number of tardy jobs into A(z,. Go to Step 5.

Step 5: If Ny > Nz » then go to Step 6.
Otherwise, go to Step 7.

Step 6: Schedule one unavailability period with
the length of /¥, in location j and schedule job J;
in location j+/I. Set k=k+1, j=j+2, and ¢ = p;,
and then go to Step 2.

Step 7: In locations j to j+y, schedule the jobs in
list M. Schedule one unavailability period with
the length of W, in location j+y+1. Set i=i-1+y,
k=k+1, j=j+y+2, and ¢;=0. Update set o' as
o' =od -M and go to Step 2.

Step 8: Calculate the objective function.
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Step 1 of algorithm H, has a time complexity of
O(nlogn). Steps 3 and 4 are of time complexity

o(n) . Therefore, agorithm H, has a time

A
e e !

<

1 - W

Kk . k+1 k+1
" \]f Jl " JnKﬂ

complexity of o(nlogn).

Yy

—
Wl
Bk

Fig. 8. Sequence S in algorithm H,

D¢

<

BE

=

=1

Yy

—

T,

SEEE EEREE
—>

N W,

Bi

Fig. 9. Sequence s’ in the algorithm H,

6. The Branch-and-Bound Algorithm
In order to solve problem 1|nr-fpapm XL, U; , a

depth first search branch-and-bound algorithm
has been used. In this algorithm, jobs are initially
aranged based on the EDD order and
renumbered in that same order. This arrangement
is taken as the input to the branch-and-bound
algorithm. In this algorithm, the solution of
algorithm H, is used as the upper bound,
Theorem 4 as the lower bound, and Theorem 5,
Lemma 2, Lemma 3, and Notation 1 as
dominance rules.

After scheduling each job J; by the branch-and-
bound algorithm, there will be two possible
branches in the tree, indicating that there are two
choices to schedule after scheduling job J;: job
Ji+1 Or an unavailability period. Consequently, the
number of branches will be at most 2"n!.

As shown in Fig. 10, when scheduling job Ji+1in
By, after job J;, there will be two branches. In first
branch, one availability constraint with value W,
(or W,) can be scheduled after J;. In the second
one, Ji.1to J, will be scheduled after J; till

U1 =T orT, . Then, an availability constraint

with value W, (or W,) can be considered after
J . In each branch, if any of lemmas or

%
theorems is violated, the branch will be
fathomed. In addition, if both of branches cannot
be fathomed, then the branch with smaller
number of tardy jobs should be continued and
other one fathomed.

Wi (or W5) .j,'+1

Jnk

W, (or W,)

Fig. 10. The branch-and-bound tree

7. Generalization of 1/nr-fpaom| L, U;
Some of the lemmas and theorems proposed for
the problem 1jr-fpabm|S(_;U; can be
generalized to a more general form represented
by 1fnr-foamm| XL, U; with multiple maximum
continuous working time of the machine. In the

multi-modal problem, the maximum continuous
working time of the machine in each period can

adopt P different values consisting of %,T,...
and the length of each unavailability period can
have P different values consisting of w,w,...,wp
depending on the maximum continuous working
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time of the machine. The mathematical model
proposed in Section 2 can be easily generalized to

problem 1|nr-fpamm| X, U; . To do so, it will
suffice to change the boundaries of p in Eqgs. (4),
(6), and (10) from 2 to P. Moreover, Theorems 2,
4, and 6, Lemmas 1 to 6, and Notation 1 will not
depend on the length of unavailability period or
on the length of batches; thus, they are entirely
true for problem 1|nr-fpamm| X, U; .

Note that a lower bound for problem
1‘nr-ﬁm,mm‘ Y ,U; can be obtained using
Theorem 4. To do so, it will suffice to calculate
the optimal solution to problem 1|r— fpd] XU
using H; algorithm with two conditions:
maximum duration of the continuous working
time of the machine is max;_ p<p and the length

of the unavailability period is min, <p<p Wp - On
the other hand, Lemma 4 is generalized to
Lemma 7 for problem 1nr- foa,mm| XU

Lemma 7: Suppose that job J; in the partial
sequence (s,W,,J;) is scheduled in batch B

and is tardy. Then, this partial sequence will
be dominated by the partial sequence (s,J;)

where ak-1+pi < Ty and r>rp.

8. Computational Results

To evaluate the performances of heuristic
algorithm H, and the proposed branch-and-bound
algorithm, they were coded in the C#
programming language and executed on an Intel
(R) Core 2Due 3.16 GHz with 2 GB RAM in
WINDOWS 7 environment. If execution time of
the problem exceeded 3600 seconds, the branch-
and-bound algorithm would be automatically
terminated.

In order to generate sample problems, the
approach proposed in Chen [23] was used.
According to this approach, processing times are
randomly generated from a uniform discrete
distribution over the interval [1, 10]. Due dates
are also randomly generated using the following
uniform discrete distribution.

di_|:(l_c_Qj' ;’_lpi,(l—C+Qj.Z?_1Pi:| (19)
2 2

In Eq. (19), C is the tardiness parameter chosen
from the set {0.2, 0.6}; Q is the parameter of due
dates chosen from the set {0.2, 0.6}; T, has the
values {10, 15, 20}, and W,;=6.

The number of jobs, i.e., n, is assumed to be any

number in the set {8, 10, 12, 14, 16, 18, 20}.
Also, T, has been selected from {1.4 7}, 1.8 T} }

and m =16 W . Any possible permutation of C, O,

T, T, W; and W, is called a series, yielding 24
(i.e., 2x2x3x2x1x1) series. In each series, for
each n, 10 problems are generated (np=10) to
create a total number of 1680 (24x7x10)
problems.

Computational results of solving the sample
problems are presented in Table 1, where
specifications of the series, number of problems
solved by the proposed branch-and-bound
method, and the mean average error of the
heuristic algorithm are reported. Since the
number of tardy jobs in a sample problem may
become zero, an appropriate measure has been
utilized to calculate the error of algorithm H> in
order to evaluate its performance. Moslehi and

. 70pt .
Jafari [24] used ~ry @8 ameasure for comparing

the results obtained from both algorithm H, and
the branch-and-bound algorithm. In this measure,
727" is the optimal value and 7' s the objective
function of algorithm H, both of which are

t

calculated from ¥ (1-uv;) . Therefore, % is
Z 2

always larger than or equal to unity, and the

denominator of the measure will never be zero.
The closer % gets to 1, the higher the
efficiency of the algorithm H, will be. The
algorithm obtains the optimal value when this
measure becomes equal to 1. Under the column

%, the mean percentage errors of algorithm H>
are reported, and this value is calculated from
optimal solutions which are obtained within the
3600 second boundary. In addition, the average
percentages of the nodes fathomed to the total
number of crossed nodes as well as the average
percentages of nodes fathomed based on the
fathoming reason are reported. It is worth
mentioning that some of the lemmas and
theorems have not been used in the branch-and-
bound algorithm due to their computational
inefficiency. The last column in the Table
presents the average execution times in seconds
for problems that were optimally solved using
algorithms H, and the branch-and-bound method.
It is also clear from Table 1 that since the total

number of states in problem 1|nr- fpabm| X1, U; is
at most 2" n!, any increase in problem dimensions

in each series results in a corresponding increase
in the solution time of the branch-and-bound
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algorithm.

Fig. 11 presents the number of problems whose
optimal solutions were obtained using either
algorithms H, or the branch-and-bound in less
than 3600 seconds. This includes all of the 24
series based on changes in parameters C and Q.
Clearly, it can be concluded from the comparison
of the number of problems solved in each series
that by decreasing C and Q values, in more
problems, the optimal solutions were obtained in
less than 3600.

Fig. 12 shows that when QO decreases, the number
of problems whose optimal solutions are obtained
from algorithm H, will decrease. Generally,
lowering the ranges of due dates leads to reduced
optimal solutions obtained in less than 3600
seconds. On the other hand, the solution time for
series 1 to 24 reduces when 7 increases. This is
because the number of batches needed to
schedule the jobs decreases and, consequently,
more optimal solutions are obtained in less than
3600 seconds.

Fig. 13 presents the trend in the changes in the
number of problems solved by H, and branch-
and-bound algorithms with respect to 7;. As
observed in Fig. 13, the number of times that H,
algorithm reaches optimal solutions increases
when 7T, increases. The reason may lie in the
reduced number of batches needed for scheduling
the jobs, which thereby reduces the errors
resulting from inappropriate selection of
unavailability  durations. Based on our
computational results, the mean percentage error
for algorithm H, is 2 percent, which confirms the
high capability of the algorithm.

Fig. 14 displays the mean solution times obtained
from the branch-and-bound algorithm versus 7;.
It can be observed that this parameter decreases
by increasing 7.

It can be seen in Fig. 15 that in series with
identical values of 7, solution time decreases
when T, - T; is larger than T;. The reason is that
the number of batches needed for scheduling jobs
reduces in the cases where there is a batch with a
maximum availability of 7, in the optimal
solution.

500 -

300 -
optimal solutions

200 - —— I algorithm

—&— branch-and-bound

100 -

Number of optimal problems
k
1< §

C=0.6 C=08 =02 C=02
Q=06 Q=02 Q=06 Q=02

Fig. 11. Performances of H, and branch-and-
bound algorithms versus changes in C and Q

1000 =
800 -

G000 -
optimal solutions

400 - - H; algorithm
=& branch-and-bound

200 4

Mumber of optimal problems

\ /

=06 0=0.2

Fig. 12. Performances of H2 and branch-and-
bound algorithms versus changes in Q

GO0
SO0

400

optimal solutions
300
=8 1, algorithm

200 sp=hranch-and-hound

Mumberof optimal problems

[

100

T =10 T =15 T =20

Fig. 13. Performances of the H, and branch-
and-bound algorithms versus changes in T;
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200 -

B00 A

400 4

{secimds}

== Averaging solving time
200 A afbranch-and-hound

HAveraging solving tirme

T-10 T=15 =10

Fig. 14. Mean solution time recorded for the
branch-and-bound algorithm versus T;

each period, the maximum continuous working
time of the machine may adopt either of two
different values, and the duration of each
unavailability period depends on the maximum
availability of the machine in that period which
can also adopt either of two different values. Our
objective was to minimize the number of tardy

jobs in a problem denoted by 1|nr-fpabm|Z_, U; .

In order to obtain the optimal solution, a binary
integer programming model was initially
proposed. It was shown that optimal solutions to
problems of larger scales are not possible due to
the complexity of the model. Then, several
lemmas and theorems were introduced and
proved. Finally, a heuristic algorithm and an
efficient branch-and-bound algorithm were
proposed to solve the problem. Dominance rules,
lower bounds, and upper bounds were
implemented in both algorithms. The proposed
branch-and-bound algorithm was found to be
capable of solving problems up to 20 jobs. In
addition, in section 7, the problem was scaled up
to investigate situations where there are multiple-

e To10 modal  availability = constraints. It  was
' demonstrated that most of lemmas and theorems,
B T=15 . .
“ . which are proposed for bimodal problem, also
- ::2\]

Averaging solving time
{secinds)
=

B

hold for the multiple-modal problem.
Further studies were suggested to enhance the

10 efficiency of the branch-and-bound algorithm
' \ through improving heuristic algorithm H, as well
0 - as the lower bound of the problem. In addition, it

TFI4T, 12117,

Fig. 15. Mean solution time obtained by
branch-and-bound algorithm in series with
identical values of T,

9. Conclusions and Suggestions for
Future Studies
In this paper, the single machine scheduling
problem with bimodal flexible and periodic
availability = constraints was  investigated.
According to this definition, it is assumed that, in

will be desirable to investigate the single machine
scheduling problem with bimodal flexible and
periodic availability constraints in which two
predetermined intervals are considered in each
period for the occurrence of unavailability and in
which the length of each unavailability period
depends on the interval changes and can be
selected in a stepwise manner.

Tab. 1. Computational results for sample problems.

Numbe Average Average percentage of fathomed Avg.
rof percenta solving
. opt nodes by .
. Optima z ge of time
Series .
1 7™ entire .
. Lower Theor Lemm Notati Lem
instanc fathome B&B
bound em5 a2 onl ma3
es d nodes
Series 1 8 10 1.02 729 76.74 233 18.60 0.00 2.33 0.06 0.11
C =02 10 10 1.02 13.81 70.81 23.89 443 0.80 0.07 0.05 1.31
=02 12 10 1.09 5331 77.49 17.02 2.76 2.65 0.08 0.03 3.99
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T =10 14 10 1.16 59.70 8590 8.73 4.77 0.59 0.00 0.07 325.9
" = 16 10 1.09 5259 7629 22.87 030 0.53 0.00 0.06 124.4
=147 18 10 113 61.01 81.91 1419 3.64 026 0.00 0.14 1226.
wy=16m 20 10 136 8750 79.98 18.54 0.19 129 0.01 0.16 223.8

Series 2 8 10 1.00 17.09 74.49 20.56 1.09 3.87 0.00 0.02 0.50
€ =02 10 10 1.10 50.11 70.22 20.42 4.71 4.53 0.12 0.05 4.39
©=02 12 10 1.01 17.28 54.60 26.58 16.65 2.17 0.00 0.02 38.42
fi=10 14 10 1.12 79.47 69.44 19.07 10.44 1.05 0.00 0.05 253.4
M= 16 10 110 56.05 6424 23.53 11.14 1.09 0.00 0.04 545.0
DT g 10 1.08 4487 7497 2099 3.71 033 0.00 0.10 756.5
W, =1.6 W, 20 10 . _ . - _ - - -
Series 3 8 10 1.00 000 ++ ++ + ++ ++ 001 0.02
C=02 10 10 1.11 4943 7634 1.73 19.52 121 1.21 0.02 0.56
Q=02 12 10 1.00 34.25 63.13 34.44 0.00 2.43 0.00 0.01 5.61
hi=15 14 10 1.07 41.45 72.46 20.51 6.03 1.00 0.01 0.03 95.04
e 16 10 1.09 43.01 70.39 20.56 8.15 0.84 0.06 0.03 8.55
B =147

18 10 1.09 31.79 68.21 25.51 5.27 1.00 0.00 0.07 24?~9
Wa=16M 20 10 1.10 61.29 71.36 26.82 0.56 1.26 0.00 0.06 255.2

--: No optimal solution achieved by branch-and-bound and #, algorithms.

++: Optimal solution achieved by #, algorithm and branch-and-bound didn’t use.

Tab. 1. continued.

Average A
Number VE.
. o Lo Dercentage Average percentage of fathomed nodes by solving time
Series n Optimal % of entire L .
; fathomed Lower Theorem Lemma Notation Lemma B&B
instances bound 5 2 1 3 2

nodes

Series4 8 10 100 0.00 i o+ 4+ 002 0.02
c=02 10 10 101 1744 69.89 2840 041 123 006 002 0.73
=02 12 10 1.02 3472 5465 37.87 0.17 730 001 001 467
hi=15 14 10 106 2696 5816 4098 0.67 0.17 002 002 6.00
Mi=6 16 10 1.04 2037 5631 4274 019 074 001 002 631
18 10 111 67.69 5821 29.15 1222 036 007 005 23.84
Ma=16M  h0 10  1.05 3092 8799 056 1089 0.00 056 005 1.06
Series 5 8 10 1.00 0.00 ++ ++ ++ ++ ++ 0.01 0.0l

c=02 10 10 101 1679 7135 27.01 038 122 005 002 082

Q=02 12 10 101 853 8757 757 324 108 054 001 0.12

T2 :18T1

=20 14 10 101 2680 5884 3884 0.02 230 000 002 13.97
Wi=6 16 10 1.03 2724 5845 3971 002 181 000 002 2428
L=14L 49 10 101 1833 7379 2616 003 002 000 005 1935
Wa=16W1 Ho 10 108 3877 6266 33.63 293 077 001 004 92.00
Series6 8 10 100 0.00 -+ — —+ + ++ 001 001

C =02 10 10  1.00 0.0 ++ + r ++ ++ 002 0.02
Q=02 12 10 100 88 4920 5022 033 025 000 00l 3.06
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T} =20 14 10 1.10 53.74 53.86 44.42 0.03 1.68 0.01 0.02 37.44
Wy =6 16 10 1.03 54.16 47.03 51.85 0.01 1.11 0.00 0.02 249.45
T, =18T 18 10 1.03 22.99 48.17  50.09 0.00 1.74 0.00 0.03 414.67
Wy, =1.6W; 20 10 1.03 18.30 85.57 1.72 12.03 0.00 0.69 0.04 0.48
Tab. 1. continued.
Average Average percentage of fathomed Avg.
percenta solving
Number of o e of nodes by time
Series n Optimal —- egntire
instances < Fathome Lower Theor Lemm Notat Lemm B&B
bound em5 a2 ionl a3 2
d nodes
Series 7 8 10 1.00 0.00 ++ ++ ++ ++ ++ 0.02 0.02
C =02 10 10 1.00 0.00 ++ ++ ++ ++  ++ 0.03 0.03
Q=06 12 10 100 000 ++ ++ 4+ ++  ++ 002 002
T =10 14 10 1.00 000 ++ ++ ++ ++ ++ 0.02 0.02
Wi =6 16 10 1.00 0.00 ++ ++ ++ ++ ++ 0.03 0.03
L=14h g 10 1.00 000 ++ ++ 4+ ++ 4+t 0.05 0.05
=16 g 10 1.00 000 ++ ++ ++ 4+ 4+ 0.05 005
Series 8 8 10  1.00 000 ++ ++ ++ ++ ++ 002 0.02
C=02 10 10  1.00 000 ++ ++ ++ ++ ++ 002 0.02
Q=06 12 10 1.00 000 ++ ++ ++ ++ ++ 001 001
hi=10 14 10 1.00 000 ++ ++ 4+ 4+ ++ 001 0.02
Wi=6 16 10 1.00 0.00 ++ ++ ++ ++ ++ 0.02 0.03
=184 18 10 1.00 0.00 ++ ++ + ++ ++ 0.04 0.04
Ma=16M 9 10 1.00 000 ++ 4+ ++ ++ ++ 004 004
Series9 8 10 100 000 ++ -+ ++ -+ + 001 0.02
C=02 10 10  1.00 000 ++ ++ ++ ++ ++ 002 0.02
Q=06 12 10 1.00 000 ++ ++ ++ ++ ++ 001 0.02
hi=15 14 10 1.00 000 ++ ++ 4+ 4+ 4+ 001 001
Mi=6 16 10 100 000 ++ ++ 4+ 4+ ++ 002 0.02
L=14n g 10 1.00 000 ++ ++ 4+ ++ 4+t 003 0.03
Wa=16W 10 1.00 000 ++ ++ ++ ++ ++ 003 0.03
Tab. 1. continued.
Average A
Number vg.
o o percentage Average percentage of fathomed nodes by solving time
Series Optimal 7% of entire ]
| I?[ VA fathomed Lower Theorem Lemma Notation Lemma . B&B
Instances nodes bound 5 2 1 3
Series 10 8 10 1.00 0.00 ++ ++ ++ ++ ++ 0.01 0.02
C =02 10 10 1.00 0.00 ++ ++ ++ ++ ++ 0.02 0.02
Q=06 12 10 100  0.00 ++ ++ ++ - ++ 001 001
Ly =15 14 10 1.00 0.0 ++ ++ + r ++ 001 001
Wi=6 16 10  1.00  0.00 ++ r T 002 0.02
L=18T 48 10 1.00  0.00 ++ ++ ++ ++ ++0.02  0.02
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W, =1.6W; 20 10 1.00 0.00 ++ ++ ++ ++ ++ 0.03 0.03
Series 11 8 10 1.00  0.00 ++ ++ ot + 0.01 0.01
c=02 10 10 100  0.00 ++ ++ ot + o 0.02  0.02
=06 12 10  1.00  0.00 ot ++ ++ ot +  0.01 0.0l
=20 14 10 100 0.0 4+ o+ 001 001
Wi=6 16 10  1.00  0.00 o ++ s +0.01  0.02
L=140 g 10 100 000 4+ 4+ 4+ o+ 002 0.03
W2=16 50 10 100 000 4+ 002 0.02
Series 12 8 10 1.00 0.00 ++ ++ ++ ++ ++ 0.01 0.0l
C =02 10 10 1.00 0.00 ++ ++ ++ ++ ++ 0.01 0.0l
€=06""12 10 100 0.0 + o+ o+ 001 001
=20 44 10 100 000 4+ o+ 001 001
M= 16 10 100 000 4+ 4+ 4+ 4+ 4+ 001 00l
L=I8T g 10 100 000 4+ 4+ 4+ 002 002
Wa=L6Wi 90 10 100 000  ++ o+ A+ 002 0.02
Tab. 1. continued.
Average Average percentage of fathomed Avg.
Number percenta solving
opt nodes by .
Series n O.f z_ 880 f time
Optimal ;% entire
. Lower Theor Lemm Notat Lemm
instances fathome . H, B&B
bound em5 a2 ionl a3
d nodes
Series 13 8 10 1.03 34.11 77.55 16.78 3.40 227 0.00 0.02 2.85
C=06 10 10 1.06 1595 85.85 13.87 0.16 0.03 0.08 0.03 2.07
Q=02 12 10 108 36.51 8120 1576 241 0.63 0.00 0.02 2833
fi=10 14 10 110 37.69 76.10 19.11 3.68 1.10 0.00 0.10 324.5
1=6 16 10 1.04 30.89 71.54 22.03 4.58 1.84 0.00 0.11 73.80
h=lad 18 10 1.08 7592 81.82 14.36 2.79 1.03 0.00 0.07 663.5
Wa=16W g 10 115 71.82 7640 2121 121 118 0.00 0.05 886.7
Series 14 8 10 1.01 32.00 75.01 20.29 3.28 142 0.00 0.02 3.73
C=06 10 10 1.07 3443 78.97 19.27 1.52 022 0.01 0.02 9.07
e=02 12 10 1.03 42.69 73.26 24.83 1.84 0.07 0.00 0.01 1845
=10 14 10 1.05 4521 7533 2240 1.06 121 0.0 0.07 69.01
#1=6 16 10 1.04 1023 6596 17.60 1435 2.04 0.05 0.04 6.54
e 18 10 1.01 20.05 67.77 28.97 2.85 042 0.00 0.05 262.7
W2 =16M 20 10 1.00 000 ++ ++ ++ ++ ++ 005 005
Series 15 8 10 1.01 1578 74.22 21.49 3.37 092 0.00 0.01 4.89
C=06 10 10 1.03 24.74 77.80 21.85 0.35 0.00 0.00 0.02 0.68
0=02 12 10 1.04 31.34 88.09 9.62 1.98 031 0.00 0.01 027
=15 14 10 1.04 25.68 63.59 27.23 6.25 2.89 0.04 0.05 2.10
#1=6 16 10 1.00 0.00 ++ ++ 4+ ++  ++ 0.03 0.04
=144 18 10 1.03 27.73 66.98 2920 245 136 0.0 0.04 58.12
Wa=16M 20 10 1.02 20.52 59.62 39.41 0.83 0.14 0.00 0.03 5.12
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Tab. 1. continued.
' Nuglfber - p?r\ézzize Average percentage of fathomed nodes by solv?n\:gg';ime
Series ! Optimal 7™ of entire Lower Theorem Lemma Notation Lemma
instances fathomed bound #,  B&B
nodes oun 5 2 1 3

Series 16 8 10 1.03 773 9412 000 588 000 0.00 0.2 005
C =06 10 10 1.00 847 5826 4028 146 0.00 0.00 002 828
Q=02 12 10 1.00 858 5898 3930 107 0.5 0.00 001 3567
=13 14 10 100 0.00 o+ 4+ 4+ 005 005
M=6 " 16 10 100 000  ++  ++  ++ 4+ 4+t 003 003

18 10  1.00  0.00 ++ ++ ++ ++ 002 0.02

Ma=16WM 50 10 101 851 6378 3269 139 214 000 003 14.19
Series 17 8 10 101 775 9355 0.00 645 000 0.00 0.01 003
C =06 10 10 1.00  0.00 ++ ++ + ++ ++ 001 001
Q=02 12 10 1.00  0.00 + ++ ++ ++ ++ 001 001

T, =187

hi=20 14 10  1.00  0.00 -+ - + —+ ++ 003 004
Wi =6 16 10 100  0.00 4+ 4+ 003 003
T, =14T,

18 10 1.00 0.00 ++ ++ ++ ++ ++ 0.03 0.03
Wa=16M 20 10 1.01 9.19 100.00 0.00 0.00 0.00 0.00 0.02 0.16
Series 18 8 10 1.00 8.36 5821 40.85 0.00 0.93 0.00 0.02 0.28

C=06 10 10 1.00 0.00 ++ ++ ++ ++ +  0.01 0.01

Q=02 12 10 .00 0.00 ++ ++ ++ ++ ++ 0.0l 001

hi=20 14 10  1.00  0.00 ++ + + ++ + 003 0.03
Wi =6 16 10 100  0.00 4 002 0.02
T, =187

18 10 100  0.00 r - —+ + 002 002
Ma=16" 5o 10 100  0.00 T+ - -+ —+ ++ 003 003

Tab. 1. continued.

A;Zr;ﬁz Average percentage of fathomed sﬁ\\:;gn
Number of p nodes by ;ving
. ) z"  geof time
Series n  Optimal = entire
instances < Lower Theor Lemm Notat Lemm
fathome ) H, B&B
bound em5 a2 ionl a3
d nodes
Series 19 8 10 1.02 7.40 8506 11.04 3.90 0.00 0.00 0.02 0.14
C=06 10 10 1.03 1577 7471 15.12 9.52 052 0.13 0.02 0.76
Q=06 12 10 1.02 7.67 79.12 1538 527 0.00 022 0.02 0.20
h=10 14 10 1.00 000 ++ 4+ 4+ 4+ 4+ 002 002
Wi=6 16 10 1.04 816 88.68 993 133 0.00 0.07 0.02 236
L=140 g 10 1.00 000 ++ ++ 4+ ++ ++ 0.06 0.06
Wa=L6W 9 10 100 000 ++ ++ ++ ++ ++ 0.05 0.06
Series 20 8 10 1.00 845 77.27 20.95 1.78 0.00 0.00 0.02 0.38
C=06 10 10  1.04 17.05 72.72 20.95 5.65 0.61 0.07 0.02 1.08
Q=06 12 10 1.01 898 81.08 17.33 1.59 0.00 0.00 0.02 2.53
T; =10

14 10 1.00 0.00 ++ ++ ++ 4+ ++ 0.02 0.02
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W =6 16 10 1.00 0.00 ++ ++ ++ 4+ ++ 0.02 0.02

T, =18T 18 10 100 000 ++ ++ ++ ++ ++ 0.04 0.05

wy=16w, 20 10 100 000 ++ ++ ++ ++ ++ 004 0.05

Series 21 8 10 1.00 000 ++ ++ ++ ++ ++ 001 0.02

C =06 10 10 1.0l 811 96.67 000 3.33 0.0 0.00 0.02 0.05

=06 12 10 1.0l 833 9778 0.00 2.22 0.0 0.00 0.01 0.06

hi=15 14 10 100 000 ++ 4+ ++ ++  ++ 002 0.02

Mi=6 16 10 1.00 000 ++ 4+ 4+ 4+ 002 0.02

L=14h g 10 1.00 000 ++ ++ ++ 4+ ++ 003 0.03

Wa=16W 9 10 1.00 000 ++ ++ 4+ 4+  ++ 0.04 0.04

Tab. 1. continued.
. Nuglfber - p?r\c/:;i;e Average percentage of fathomed nodes by solv?ntggﬁme
Series t Optimal % of entire Lower Theorem Lemma Notation Lemma
instances fathomed bound 5 2 1 3 H  B&B
nodes
8 10 10 .00 000  ++ ++ ++ o+ 0.02
Series22 19 190 10 100 000 ++  ++ 4+  +H  + 001
o e 1210 10 100 000 A+ A+ 001
s 14 10 10 .00 000  ++ ++ ++ ++ o+ 001
Wi=6 16 10 10 1.00 0.00 ++ ++ ++ ++ ++ 0.02
LD 18 100 100 100 000 A+ H 4+ 003
20 10 10 1.00 000  ++ ++ ++ 4+ 003
Series 23 8 10 10 .00 000  ++ ++ ++ 002
Cc=06 10 10 10 .00 0.00  ++ ++ ++ o+ 0.02
Q=06 12 10 10 1.00 0.00  ++ ++ ++ ++ o+ 001
hi=20 44 10 10 100 000  ++ o+ 4+ o+ 001
#1=6 16 10 10 .00 000  ++ ++ ++ ++ o+ 001
L=I4L g 10 10 100 000 4+ A+ o+ 002
Ma=16Wi Hy 10 10 .00 000  ++ ++ + o+ 0.02
Series 24 8 10 10 1.00 0.00 ++ ++ ++ ++ ++ 0.01
g 28:2 10 10 10 .00 000  ++ + + o+ 002
T2 12 10 10 .00 000  ++ ++ ++ ++ 4+ 001
W6 14 10 10 .00 0.00  ++ ++ ++ ++ o+ 001
noisr 1610 10 .00 0.00  ++ ++ ++ ++ o+ 001
RS € S 11 10 .00 0.00  ++ ++ ++ o+ 0.02
h ” ” e nn I IResearclhl, Vol. 20, No. 3‘,‘ (2009|)I, pp. [i({)\;—
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